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An initial-value method, based on the use of certain compound matrices, is presented 
for the treatment of mathematically unstable two-point boundary-value problems. A 
distinctive feature of the method is that the solution is obtained from an auxiliary equation 
which is mathematically stable and it thereby avoids the well-known difficulties associated 
with, for example, the method of complementary functions. The method is described in 
detail for fourth-order equations but it is also shown how the method can easily be adapted 
to deal with second- and third-order equations. 

1, INTRODUCTION 

Boundary-value problems involving mathematically unstable ordinary differential 
equations frequently arise in many fields of application. Although such problems can 
sometimes be treated analytically by the methods of asymptotic analysis or singular 
perturbation theory, the numerical solution of problems of this type is generally a 
formidable task. In a recent paper [6], it was shown how certain compound matrices 
could be used for eigenvalue problems for linear ordinary differential equations and 
in this paper we wish to show how they can be used for mathematically unstable 
two-point boundary-value problems. 

In Section 2, we give a description of the compound matrix method for fourth- 
order equations and, in Section 3, two examples are considered which, we believe, 
provide a severe test of the method. An attempt to extend these results to higher- 
order systems of equations has led to a number of further questions but, for reasons 
of simplicity, we have not touched on these matters. In Section 4, however, we indicate 
how the method can be adapted to deal with second- and third-order equations and 
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an example is considered for which the solution has boundary-layer behavior near 
both end points of the interval. Finally, in Section 5, we consider the relationship 
between the compound matrix method and the well-known Riccati method, and an 
alternative procedure is suggested for finding the solution which avoids the numerical 
difficulties associated with the use of the recovery transformation. 

2. DESCRIPTION OF THE METHOD 

For simplicity in the presentation, we shall discuss the method of compound 
matrices in terms of a boundary-value problem consisting of a single fourth-order 
differential equation subject to an equal number of separated boundary conditions 
at the end points. Consider then the equation 

L,(c/) = +* - aI+” - a,+v - a,c$’ - a,$ =f, (1) 

where al , a2 , a3 , a and f are functions of x and 0 < x < 1. For our purposes it is 4 
convenient to rewrite (1) as a system of first-order equations. Thus, if we let 
4 = [A 4’9 4”, PIT and f = [0, 0, 0, flT, then (1) becomes 

4’ = A(x) + + f, 
where 

a4 as a2 al 

The boundary conditions at x = 0 and 1 are then given by 

W(O) = P and Q+(l) = a 
where 

p = 
[ 

Pll Pl2 PlS P14 1 and Q = [ 411 912 413 q14 

P21 P22 P2S P24 q21 q22 q23 cI24 I 

(2) 

(3) 

(da, b) 

Va,b) 

are matrices of rank 2, and p and q are 2 x 1 column vectors. The solution to (2) 
subject to the boundary conditions (4) can now be written in the form 

4 = 4+ 41+Pb2, (6) 

where +,, is any solution of (2) which satisfies the intial conditions (4a), while & 
and 42 are two linearly independent solutions of the homogeneous system 

4’ = A(x) 4 (7) 

which satisfy the initial conditions 

P&(O) = 0 (i = 1, 2). (8) 



72 NG AND REID 

In the usual application of the method of complementary functions, &, , #or , and & 
must be computed separately. The boundary conditions at x = 1 then lead to a pair 
of linear equations from which, at least in principle, the constants OL and j3 in (6) 
can be determined. Nevertheless, it is well-known [l] that the coefficient matrix of the 
linear equations for a and /3 can be highly ill-conditioned if the solutions of (7) exhibit 
inherent growth problems. In that case a further loss of accuracy will occur due to 
cancellation errors as Cp must be obtained from (6) by superposition. In this section, 
therefore, we wish to describe a method, based on the use of certain compound 
matrices, which appears to overcome these numerical difficulties. 

Consider then the 4 x 3 solution matrix of the inhomogeneous system (2) 

and the 4 x 2 solution matrix of the corresponding homogeneous system (7) 

The 2 x 2 minors of 9 are 

and they satisfy the quadratic identity 

YlY6 - Y2Y5 + hY4 = O* 

The 3 x 3 minors of 9, are then given by 

Zl = Yl& - Y2Kl + Y440, 

(9) 

(11) 

(12) 

(13) 

z4 = Y4& - h+; + Y,hi 
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For later purposes, we also note the further identities 

Y3Zl - YzZ2 + YlZ3 = 0, 

YPl - Y4Zz + YlZ4 = 0, 

YaZl - Y4z3 + YZz4 = O, 
(14) 

Y&72 - Y5Z3 + Y3Z4 = 0. 

These relations are not independent, however, since if any two of the identities (14) 
are given then the other two can be derived from them. 

If we now let y = [ y1 ,..., ys]r and z = [zr ,..., z41T, then y is simply a second com- 
pound of 4 and z is a third compound of 40. Moreover, by a direct calculation, it 
can easily be shown that the components of y must satisfy the equations 

Y;l = Y3 + Ya 3 

u; = a3Yl + a2Yz + %Y3 + Y5 9 

Y; = Y5 9 

Y; = -“4Yl + a2Y4 + =lyS + YS 9 

Yi = -4y2 - a3y4 + aly6. 

Similarly, the components of z must satisfy the equations 

(15) 

z; = Z2) 

z; = a2z1 + RZ2 + z3 + Ylf, 
(16) 

4 = -a3zl + w3 + z4 + v2f, 

4 = a4zl + w4 + y4f. 

By using (11) and (13), we can immediately derive the initial conditions for y and z 
at x = 0. For example, if (b(0) = c and F(O) = d, as these are the relevant boundary 
conditions at x = 0 for the numerical examples to be discussed in Section 3, then we 
can choose 

4,(O) = [c, 4 0, W, MO) = 10, 0, 1, OIT, and 42(O) = IO, 090, 1lT. (17) 

The initial conditions for y and z are then given by 

Y(O) = LO, 0, 0, O,Q1lT and z(0) = [0, 0, c, d]=. (18a, b) 

Once y and z have been obtained by integrating (15) and (16) from x = 0 to 1, subject 
to these or other appropriate initial conditions, the solution 4 can be determined in 
the following manner. 
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We first note that there must exist constants 01 and /3 such that 

We do not, of course, have any knowledge of c$,, , &, and #z separately. However, 
on eliminating OL and /I from (19) in four different ways and then using (13), it is easy 
to show that C$ must satisfy 

ylr$” - y24’ + Y44 = 3) (20) 

y,p - y3$’ + Ys4 = z2 3 (21) 

y2ry - y3q + Y6d = z3 9 (22) 

y4fp - y5$” + Y&b = ZP - (23) 

Thus, once g(l) is known, these equations suggest that the solution 4 to the boundary- 
value problem can be obtained by integrating any one of them backwards from 
x = 1 to 0. It should be mentioned, however, that x = 0 is often a regular singular 
point of Eqs. (20) to (23). For example, consider the case when y(0) is given by (Isa). 
By considering the behavior of the solutions of Eqs. (20) to (23) as x -+ 0, it can easily 
be shown [6] that x = 0 is a regular singular point of the equations and at that point 
they have exponents (2, 3), (-2,2, 3), (-Q, 2, 3), and (0,2,3), respectively. Thus, 
if one were to obtain 4 by integrating Eqs. (21), (22), or (23) from x = 1 to 0, then 
some numerical difficulties would be expected due to the exponents -2, -4, and 0 
of these equations respectively at x = 0. In this case, therefore, only Eq. (20) should 
be used to obtain $. 

To determine the initial condition for + at x = 1, we first rewrite Eqs. (20) to (23) 
as a system of linear equations for the unknown vector 4(l) in the form 

M(1) 4(l) = z(l), (24 

where 

(25) 

It is easy to show that M(1) is of rank 2. For example, if we suppose that y*(l) # 0 
(say), then by using row reduction and the quadratic identity (12) we can show that 

Y,(l) 0 

-Y,(l) Y,(l) 
0 0 
0 0 1 

(26) 
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Clearly then the boundary conditions (4b) together with Eq. (24) form a system of 
linear equations from which 4(l) can be uniquely determined provided that 

r qll q12 413 914 1 

det 412 q22 q23 

y4? -y2(1) 

q24 # 0 
Y(l) 0 * 

Y,(l) --Y,(l) Y4U) J 

(27) 

We note that this condition must be satisfied if the boundary-value problem is to have 
a unique solution. This follows from the fact, which can be verified by a direct cal- 
culation, that (27) is equivalent to the condition that det[Q4(1)] # 0, where 4 is 
any solution matrix of the homogeneous system (7) which satisfies the homogeneous 
boundary conditions PO(O) = 0. 

Suppose now’ that +(l) has been determined in the manner described above. It 
then remains to be shown that the solution 4 which satisfies these initial conditions 
and any one of Eqs. (20) to (23) is also a solution of Eq. (1). For this purpose let 

w = M(x) 4 - z, (28) 

where w = [wl ,..., w&p. On differentiating (28) and rewriting in component form we 
have 

w; = w*, (29) 

4 = a,% + Ql% + w3 + Y&4(& - f>, (30) 

w; = --a3wl + =lw3 + w4 + Y,iL,(# - f>, (31) 

4 = a4w1 + 6W4 + Y4@4(# - f>. (32) 

Since b(l) is chosen so that (24) is satisfied, we must have w(1) = 0. If we now suppose 
that I# has been obtained by integrating Eq. (20), then w, = 0 and it follows from (29) 
that wz E 0 also. Thus, Eqs. (30) to (33) become 

0 = w3 + Y&54(+) - f>v (33) 

w; = alw3 + w4 + Y2tL4(& - f>, (34) 

4 = %W4 + Yaw,(+) - f>. (35) 

On using (33) to eliminate L4+ - f from (34) and (35), we obtain a pair of homo- 
geneous first-order equations for w, and w4 . The only solution of these equations 
which satisfies the initial conditions ~~(1) = w4(l) = 0 is the trivial one and hence 
it follows that L44 -f z 0. By a similar argument it can also be shown that if + 
satisfies Eqs. (21), (22hsor (23), then it is also a solution of Eq. (1). 
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Finally, it should be noted that the method described in this section can be simplified 
in the case of a boundary-value problem involving a homogeneous equation and 
homogeneous boundary conditions at x = 0 (say): for, if f = 0 and P+(O) = 0, 
then z = 0 for 0 < x < 1. Thus, it is sufficient to compute y by integrating (15) 
from x = 0 to 1, and the solution I$ can then be obtained by integrating Eq. (20) 
with z, E 0 from x = 1 to 0. 

3. NUMERICAL EXILES 

3. I. Conte’s Problem 

To test the effectiveness of the compound matrix method on unstable boundary- 
value problems, we consider first an example discussed by-Conk, [I,] in connection 
with the method of orthonormalization. Thus, consider the equation 

p _ (1 + k2) 4” + k2q5 = - 1 + Bk2x2, (36) 

subject to the boundary conditions 

4(O) = 1, F(O) = 0 (37) 

and $(l) = 8 + sinh 1, #(I) = 1 + cash 1. (38) 

This two-point boundary-value problem can, of course, be solved analytically and 
the exact solution 

b(x) = 1 + +x2 + sinh x (39) 

‘has the distinctive feature of being independent of the parameter k. However, on 
rewriting Fq. (36) as a first-order system of the form (2), it can easily be seen that 
the eigenvalues of the coefficient matrix A are &l and &k. Clearly then, when k is 
large, any attempt to determine 4 by shooting or by the method of complementary 
functions will encounter severe difficulties because the inevitable presence of some 
multiples of the solutions e*kz will render the direct integration of Eq. (36) inherently 
unstable. In the compound matrix method, however, + is obtained as the solution of 
a mathematically stable differential equation and, the problem of destructive growth 
is thereby avoided. 

Thus for this problem, with a, = a, = 0, a2 = 1 + k2, a4 = -k2, and 
f = - 1 + $k2x2, we first integrate Eqs. (15) and (16) from x = 0 to 1 subject to the 
initial ‘conditions 

Y(O) = P, 0, 0, 0, 0, 1lT and z = [O, 0, 1, O]T. WI 

Although it is possible to solve for y(x) and z(x) analyucally, it issufficient for the 
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present purposes to note that for x > 0 and kx > 1 we have the asymptotic ap$roxi- 
mation 

Y(X) - - 
ekx cash x 
2(k2 - 1)” x 

ka tanh x - k2 - 1 + k-l tanh x 
- 2k tanh x + 1 

F2 - l)(k - tanh x) 

(41) 

-k tanh x - 2 + k-l tanh x 
k2 tanh x - k - tanh x + k-l 

-k(k2 tanh x - 2k + tanh x) 

The corresponding approximation to z(x) is somewhat complicated but it is not needed 
in the present discussion. Consider now the possibility of determining 4 by integrating 
(20) from x = 1 to 0. To study the behavior of the solutions of (20) for large values 
of kx, we may replace yI , y2 , and y4 by their approximations (41). On then rewriting 
(20) in system form, it is found that the eigenvalues of the coefficient matrix associated 
with (20) are given by 

Clearly this shows that Eq. (20) is stable with respect to backward integration from 
x = 1 to 0 but that it is unstable with repect to forward integration due to the large 
and positive eigenvalue k. A similar analysis leads to the same conclusion for Eqs. (22) 

FlG. 1. The behavior of the ratios yz/yl , y,/yI and ‘zJy, fop Conte’s problem with k = lo*. 

n 
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and (23). Equation (21), however, is found to be unstable irrespective of the direction 
of integration since, in addition to k, one of the two remaining eigenvalues of its 
coefficient matrix is large and negative. These conclusions have also been confirmed 
by actual numerical experiments. Furthermore, by taking into account the possibly 
singular nature of the solutions of Eqs. (22) and (23) near x = 0 as discussed in 
Section 2, it is clear that only Eq. (20) should be used to compute the solution 4 
for this problem. In Figure 1 we show the behavior of the ratios y.Jy, , y.,/yl , and 
.& for k = lo2 and we note that they all become unbounded as x --f 0. This shows 
that, even in the case of Eq. (20) backward integration from x = 1 to 0 cannot yield 
the final value of 4 at x = 0, but such behavior does not appear to cause any other 
numerical difficulties. 

We have also computed the solution 4 for several values of k, ranging up to and 
including k = 109. For simplicity, the calculations were made by using a Runge- 
Kutta-Gill procedure with constant stepsize h and they were performed in single 
precision arithmetic on a CDC-6600 computer. In Table I, for example, we show the 
effect of stepsize on the maximum relative errors of 4 and 4’ among 50 equally spaced 
points at x = 0.02(0.02) 1 for k = lOa. 

TABLE I’ 

Maximum relative errors 

0.001 l.OE - 06 5.6E - 06 

0.0005 6SE - 08 4.OE - 07 

0.00025 4.2E - 09 2.6E - 08 

a The effect of stepsize on the numerical solution of the boundary- 
value problem (36) to (38) with k = 1P. The maximum relative errors 
are computed among 50 points located at x = 0.0240.02)l.O. 

3.2. A Boundary-Layer Problem 

Consider next the homogeneous form of Eq. (36) which is given by 

p” - (1 + k2) q5” + k2cj = 0 (43) 

together with the boundary conditions 

$40) = 0, $hyO) = 0 w 
and 4(l) = 1, b’(l) = 0. (45) 

This problem was first studied by Flaherty and G’Malley [3]. It is of the singular 
perturbation type since 4’ possesses a boundary layer of thickness O(k-l) near each 
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FIG. 2. The behavior of 4 and fl of the boundary-value problem (43) to (45) near the end points. 

of the two end points. The behavior of #I and 4’ in the vicinity of x = 0 and 1, as 
found by the present method, is shown in Fig. 2 for k = 102. Clearly, many of the 
same difficulties encountered in Conte’s original problemmust also arise in thisexample 
and the presence of the bondary layers in 4’ provide a further test of the versatility 
of the compound matrix method. 

Since Eq. (43) and the boundary conditions (44) at x = 0 are both homogeneous, 
we must have z = 0 and it is sufficient therefore to integrate Eqs. (15) from x = 0 

TABLE II’ 

Maximum relative errors 

(9 (ii) (iii) 

0.001 3.6E - 03 4.2E - 03 1.6E - 05 6.4E - 06 3.7E - 08 2.OE - 06 

0.0005 1.7E - 04 2.9E - 05 l.lE - 06 4.4E - 07 2.4E - 09 1.3E - 07 

0.00025 9.4E - 06 2.9E - 06 7.OE - 08 2.9E - 08 1.5E - 10 8.3E - 09 

a The effect of stepsize on the numerical solution of the boundary-value problem (43) to (45) with 
k = lo*. The maximum relative errors are computed among points located at (i) x = 0.002(0.002) + 
0.02, (ii) x = 0.04(0.02)0.96, and (iii) x = 0.98(0.002)1.0. 
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to 1 subject to the initial conditions (Isa). The solution can then be obtained by back- 
ward integration of Eq. (20) with z1 = 0. We have computed 4 and $‘, using different 
but uniform stepsizes, for k = IO2 and a comparison of these numerical results with 
the analytical solution is given in Table II. 

It should be noted that results of comparable accuracy to those presented here and 
in Section 3.1 can very likely be obtained with a substantial reduction in the number 
of integration steps by using, for example, the Runge-Kutta-Fehlberg integration 
procedure. We have not exploited such a possibility here because our primary aim is 
is simply to show how reasonable accuracy can be achieved with a minimal amount 
of programming effort. 

4. SECOND- AND THIRD-ORDER PROBLEMS 

Thus far we have restricted our discussion to boundary-value problems involving 
fourth-order equations. The basic ideas involved in the use of compound matrices 
can be generalized in a variety of ways, and in this section therefore we wish to show 
how the method can be applied to second- and third-order problems. 

Consider first a single third-order equation 

L,(+) = d" - b,+” - b,+’ - bs4 =f, (46) 

where bl , 6, , b, , and f are functions of x and 0 < x < 1. We now let 
4 = [4, d’, #“I’; we shall also suppose that a single boundary condition is prescribed 
at x = 0 and is given by 

PO(O) = p, (47) 

where, in this case, P is a 1 x 3 row vector and p is a constant. If, as before, we let 
& denote the solution of (46) which satisfies (47) and let & and & denote two linearly 
independent solutions of the corresponding homogeneous system, then the solution 
matrices 40 and @ are given by 

The 2 x 2 minors of 4 are now defined by 

and the only 3 x 3 minor of 4, is simply its determinant which can be expressed in 
the form 

Z = J'& - Y261 + Y39511. (50) 
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On differentiating (49) and (50) and eliminating the third derivatives by the use of 
(46), we then obtain 

(51) 

where the initial conditions for y, , y, , y3 , and z follow directly from the corre- 
sponding conditions on &, , & , and C& . By using an argument similar to the one 
discussed in Section 2 for the fourth-order case, it follows immediately that the solution 
must satisfy the equation 

Yld” - Y24’ + Y3$ = z (52) 

together with the prescribed boundary conditions at x = 1. 
The foregoing analysis can easily be adapted to deal with boundary-value problems 

involving a second-order equation of the form 

L,(#) = 4” - b,# - b,# =f (53) 

together with separated boundary conditions at x = 0 and 1. If we now let # = $‘, 
then Eq. (53) becomes 

p - b,$" - b,$' =f (54) 

and our discussion of third-order problems is then directly applicable on setting 
b, = 0. Moreover, a further simplification is possible if we assume, as is often the case, 
that the boundary condition at x = 0 is imposed on either $ or 4’. In that case we 
have ~~(0) = 0 and, with b, z 0, the third of Eqs. (51) shows that y,(x) = 0. Thus, 
it is sufficient to integrate the remaining three of Eqs. (51) from x = 0 to 1 to determine 
yr , y2 , and z. The solution 9 can then be obtained by integrating the first-order 
equation 

from x = 1 to 0. 

Yl$’ - Y2# = z (55) 

As an application of the procedure just described, we have used it to compute the 
solution of the equation 

a,/~” + I/’ - k2$ = 0 (56) 

subject to the boundary conditions 

*m = 1 and 9(l) = Q. (57) 
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This problem is also of the singular perturbation type and it can easily be shown that 
# exhibits boundary-layer behavior in intervals of thickness O(k-l) near each of the 
two end points. Moreover, the eigenvalues of the coefficient matrix associated with 
(56) are $[--1 & (1 + 4/~~)~/~]. For large values of k, integration of (56) is therefore 
inherently unstable and it has been observed [3] that the solution of this boundary- 
value problem cannot be obtained by shooting for k 2 30. We encountered no diffi- 
culties, however, in computing + using the present method for values of k up to and 

TABLE III 

A Comparison of the Numerical and the Exact Solution of the Boundary-Value Problem (56) and 
(57) with k = 10” and h = 0.0005 

x Computed 4 
Absolute 

error 
Relative 

error 

0.000 a - - 

0.002 0.8179136 + 00 0.27E - 05 3.4E - 06 

0.004 0.668978E+ 00 0.74E - 06 l.lE - 06 

0.006 0547164E + 00 0.38E - 06 6.9E - 07 

0.008 0.447531 E + 00 0.25E - 06 5.5E - 07 

0.010 0.366040Ef 00 0.18E - 06 4.9E - 07 

0.020 0.1399858 + 00 0.61 E - 07 4.6E - 07 

0.100 0.431804E - 04 0.36E - 10 8.4E - 07 

0.200 0.186455E - 08 0.25E - 14 1.3E - 06 

0.300 0.805118E - 13 0.15E - 18 1.8E - 06 

0.400 0.347653E - 17 0.8OE - 23 2.3.E - 06 

0.500 0.273869E- 21 0.75E - 27 2.7E - 06 

0.600 0.259318E- 17 0.55E - 23 2.1E - 06 

0.700 0.543397E - 13 0.86E - 19 1.6E - 06 

0.800 0.113868E - 08 0.12E - 14 l.lE - 06 

0.900 0.238608E- 04 0.13E - 10 5.3E - 07 

0.980 0.6834606 - 01 0.72E - 08 l.lE - 07 

0.990 0.1848596 + 00 0.98E - 08 5.3E - 08 

0.992 0.225563Ef 00 0.96E - 08 4.2E - 08 

0.994 0.275228E+ 00 0.87E - 08 3.2E - 08 

0.996 0.335829E + 00 0.71E - 08 2.1E - 08 

0.998 0.409774E+ 00 0.43E - 08 1.1E - 08 

1.ooo 0.5OOOOOE + 00 0.00 0.0 

o Cannot be obtained numerically by the present method as discussed in the text. 
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including 103. A comparison of the numerical results with the analytical solution is 
given in Table III for k = lOa. These results clearly show the rapid variation of the 
solution in the boundary layers near the two end points. 

5. RELATIONSHIP TO THE RICCATI METHOD 

Various initial-value methods have been proposed in the past to deal with mathe- 
matically unstable two-point boundary-value problems. Among these, the Riccati 
method [7] has attracted considerable attention recently. It is of some interest, there- 
fore, to consider briefly certain relations between the Riccati method and the com- 
pound matrix method. In particular, a modification of the usual Riccati method for 
determining the solution will be suggested which appears to overcome the difficulties 
discussed by Nelson and Giles [5]. 

To fix ideas, we shall again consider an inhomogeneous fourth-order equation of 
the form (1). For simplicity, we shall also suppose that the boundary conditions at 
x = 0 and 1 are given by n(O) = p and v(1) = q, where a = [A #‘IT, v = [#“, #“IT, 
and p and q are constant 2-vectors. The first step in the application of the Riccati 
method to this boundary-value problem [4,7] is to define a transformation of the form 

u = Rv + g. (58) 

It can then be shown [4,7] that the 2 x 2 Riccati matrix R and the 2-vector g must 
satisfy the equations 

and 
R’ = A,,R - RAz2 - RAslR + A,, (59 

g’ = (An - %a) g - Icr, 9 (60) 

where f, = [0, flT, and Al1 , Al2 , A,, , and Azz are 2 x 2 submatrices of the coefficient 
matrix in (2), i.e. 

It can easily be seen from (58) that the natural initial conditions for R and g are simply 
R(0) = 0 and g(0) = p. 

The relationship between the elements of the Riccati matrix R and the components 
of the second compound y has been discussed by Davey [2] in connection with the 
removal of certain singularities from the Riccati method. Thus, following Davey, 
if we let 

r1 = Y3h 7 r2 = --Y2h p r3 = YJY~, 

then the quadratic identity (12) becomes 

YI/Y~ = rlr4 - r2r3 . 

and r4 = -u4h , (62) 

(63) 
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On differentiating (62), and then using (15) and (63), we can immediately show that 
the ratios (62), as the notation suggests, are, in fact, the elements of the Riccati matrix 

R = [;: ;I]. 

More generally, by rewriting Eqs. (15) in terms of ratios of the form yi/vj for some 
fixed j, the system of six linear equations can always be reduced to a system of four 
non-linear equations of Riccati type. It should be emphasized, however, that such a 
reduction is desirable only if a yi(x) can be chosen such that it does not vanish any- 
where in the interval 0 < x < 1. 

The relationship between g and the third compound z can be dicussed in a similar 
way by considering ratios of the form zi/vj for some fixed j. Thus, if we let Si = zi/yG 
(i = 1,2, 3,4), then a short calculation shows that Eqs. (16) can be rewritten as 

and 

s; = -(a1 + 43r'4 + w,) $1 + ?z 9 (654 

s; = a$1 - (a3r4 + &r,)s, + s3 + (rlr4 - r$3)f, (65b) 

3; = --a3sl - (a3r4 + u4r2) s3 + s4 - r2f VW 

s; = u4s1 - (u3r4 + u,r,) s4 - r4J (66b) 

Furthermore, if we now let g, = [or , ~,]r and g, = [s, , s4]r, then it can be shown 
that the identities (14) are equivalent to the single matrix equation 

Rg, + (det R) g2 = 0. (67) 

By using this equation to eliminate S, and s1 from Eqs. (65) and (66) respectively, 
we immediately obtain two uncoupled systems for g, and g, . In particular, it is found 
that g, satisfies Eq. (60) and hence g, s g. 

In the usual application of the Riccati method [7], the next step is to introduce a 
recovery transformation of the form 

v(O) = T(x) v(x) + h(x), 658) 

where the 2 x 2 matrix T and the 2-vector h satisfy the equations 

T’ = -VA,2 + A,,R), 

h’ = -T(A,,h + f,), 

(69) 

(70) 

and the initial conditions T(0) = I and h(0) = 0. To compute the solution of the 
boundary-value problem, it is then necessary first to integrate Eqs. (59), (60), (69), 
and (70) subject to the appropriate initial conditions. Once R, g, T, and b are known 
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on the interval 0 < x < 1, the solution u and v can be obtained algebraically from 
(58) and (68) by first noting that 

v(O) = T(1) q + h(l). (71) 

It has been observed by Nelson and Giles [5], however, that a direct application of 
this procedure may result in a severe loss of accuracy in the numerical solution due 
to possible cancellation errors in (68). These difficulties can partially be overcome by 
using the method of successive starts [5, 71. Alternatively, Eqs. (20) to (23) can be 
rewritten in terms of the Riccati variables ri and si (i = 1, 2, 3,4) in the form 

(r1r4 - r2r3) 4” - r2$’ + f.44 = 31 , (72) 

(v, - r2f.3) 5” - r,$’ + r3+ = 32 , (73) 
-r2p - r# + $ = s3, (74) 
--r&J - r,$” + 4’ = s, . (75) 

This suggests that once R and g, have been obtained by integrating (59) and (60) 
from x = 0 and 1, g, can be determined from (67), and the solution + can then be 
obtained by integrating (72) backwards from x = 1 to 0. A further alternative would 
be to obtain g, and g2 directly by integrating (65) and (66), thereby avoiding the use 
of (67). Thus, both of these procedures eliminate the need for integrating (69) and 
(70), and they also avoid the numerical difficulties associated with the use of the 
recovery transformation (68). 
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